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Efficient characterization of spatial Schmidt modes of multiphoton entangled
states produced from high-gain parametric down-conversion
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The ability to efficiently characterize the spatial correlations of entangled states of light is critical for
applications of many quantum technologies such as quantum imaging. Here, we demonstrate highly efficient
theoretical and experimental characterization of the spatial Schmidt modes and the Schmidt spectrum of bright
multiphoton entangled states of light produced from high-gain parametric down-conversion. In contrast to
previous studies, we exploit the approximate quasihomogeneity and isotropy of the signal field and dramatically
reduce the numerical computations involved in the experimental and theoretical characterization procedures. In
our particular case where our experimental datasets consist of 5000 single-shot images of 256 x 256 pixels each,
our method reduced the overall computation time by 2 orders of magnitude. This speedup would be even more
dramatic for larger input sizes. Consequently, we are able to rapidly characterize the Schmidt modes and the
Schmidt spectrum for a range of pump amplitudes and study their variation with increasing gain. Our results
clearly reveal the broadening of the Schmidt modes and the narrowing of the Schmidt spectrum for increasing

gain with agreement between theory and experiment.
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I. INTRODUCTION

One of the major thrusts in the field of quantum optics
is the efficient generation and characterization of entangled
and squeezed states of light for a variety of quantum ap-
plications such as communication [1,2], computation [3,4],
sensing [5,6], imaging [7], and phase metrology [8,9]. In
this context, the most widely used experimental platform is
a process known as spontaneous parametric down-conversion
(SPDC) in which an incident pump field interacts with a
nonlinear optical medium to produce a pair of fields known as
the signal and the idler [10,11]. For low pump strengths, the
output signal-idler quantum state is approximately an entan-
gled two-photon state [12], whereas for high pump strengths,
it is a multiphoton entangled bipartite state known as a bright
squeezed vacuum [13]. In both these regimes of SPDC, the
spatial and photon number correlations between the signal and
idler fields have been of particular interest for quantum imag-
ing schemes such as sub-shot-noise quantum imaging [14],
ghost imaging [15], and imaging with undetected photons
[16]. In such schemes, the critical performance parameters
such as imaging resolution and contrast ultimately depend on
the spatial correlations of the entangled fields [17—19]. There-
fore, in order to be able to devise strategies for optimizing
these parameters while simultaneously preserving any inher-
ent quantum advantage, it is vital to characterize these spatial
correlations and their variation with increasing pump strength.
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An important tool used for characterizing the spatial corre-
lations of entangled pure states produced from SPDC is the
Schmidt decomposition [20]. This decomposition uniquely
expresses every bipartite state in terms of its constituent
Schmidt modes that are weighted by the Schmidt spectrum,
whose effective width quantifies the degree of entangle-
ment. In the context of low-gain SPDC, previous studies
have analytically shown that, when the sinc-shaped phase-
matching function is approximated by a Gaussian function,
the Schmidt modes of the spatial two-photon wave function
are the Laguerre-Gaussian functions in polar coordinates or,
equivalently, the Hermite-Gaussian functions in Cartesian co-
ordinates [21-24]. The polar representation has been the focus
of studies on the orbital angular momentum spectrum and its
dependence on pump and crystal parameters [25-27], but the
Cartesian representation has also been studied to some extent
[22-24].

In contrast to low-gain SPDC, the theoretical charac-
terization of Schmidt modes in high-gain SPDC has been
challenging because no closed-form analytic solution of the
output state exists at present for a general pump field [28-31].
In a previous study, a model of high-gain SPDC was devel-
oped by assuming that the size and shape of the Schmidt
modes are independent of the gain [29]. However, the model
was unable to explain the experimentally observed broad-
ening of the far-field intensity profile with increasing gain,
indicating that the underlying assumption was invalid. Sub-
sequently, Ref. [30] relaxed the assumption and carried out a
numerical calculation of one-dimensional (1D) slices of the
Schmidt modes and showed their profiles to be in agreement
with corresponding experimentally inferred 1D slices through
intensity covariance measurements. These measurements

©2025 American Physical Society


https://orcid.org/0000-0002-0829-8783
https://ror.org/03c4mmv16
https://ror.org/022kthw22
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.111.023714&domain=pdf&date_stamp=2025-02-27
https://doi.org/10.1103/PhysRevA.111.023714

AMOOEI, KULKARNI, UPHAM, AND BOYD

PHYSICAL REVIEW A 111, 023714 (2025)

revealed a slight expansion of the individual Schmidt modes
with increasing gain.

Recently, one study has performed the experimental re-
construction of the full 2D Schmidt modes for a fixed pump
strength in the high-gain regime [32]. In this reconstruction
method, one first acquires a large number of (N x N)-pixeled
images of the signal in the far-field, computes the (N x N x
N x N) 4D spatial correlation function from intensity covari-
ance measurements, and then diagonalizes this correlation
function to yield the (N x N)-pixeled 2D Schmidt eigen-
modes. As the spatial resolution and the spectral range of the
measurement both increase with N, it is desirable to maximize
N for a given transverse size of the measured field. However,
the computation and diagonalization of the 4D spatial correla-
tion function become highly cumbersome and impractical as
N increases. Therefore, there is a strong need to reduce the
computational complexity, at least for specific experimental
scenarios that are commonly encountered.

In this article, we consider the common scenario involv-
ing a rotationally symmetric pump field undergoing SPDC
to produce a quasihomogeneous and isotropic signal field. In
particular, we assume that the normalized degree of spatial
coherence of the signal field is translationally and rotationally
invariant. In this case, we show that the translational and
rotational symmetries can be exploited to vastly enhance the
computational efficiency of the aforementioned characteri-
zation method. In particular, instead of computing the full
(N x N x N x N) 4D spatial correlation function, we now
only compute an (N x N) 2D spatial correlation function,
diagonalize it to obtain (N x 1) 1D Schmidt modes, and then
tensor multiply those modes to obtain the full (N x N) 2D
Schmidt modes. As a result, we are able to characterize the
spatial Schmidt modes both theoretically and experimentally
for a range of increasing pump strengths in a highly efficient
manner. The paper is organized as follows. In Sec. II, we
present a theoretical description of the characterization pro-
cedure. In Sec. III, we present our experimental results and
their comparison with theoretical predictions. In Sec. IV, we
conclude with a summary and outlook of our study.

II. THEORETICAL ANALYSIS

We consider the case of near-degenerate type-I SPDC from
a quasimonochromatic pump field. In this situation, we can
suppress the frequency and polarization variables and write
down the Schmidt decomposition of the joint spatial bipartite
wave function W(q,, g;) of the signal and idler fields as

Vg, q) = Y Vhoui(g,)ui(g,), (1)
k=0

where the positive real numbers A, constitute the Schmidt
spectrum, ¢q [ represents the transverse wave vector, and the
normalized spatial functions ur(q;) constitute the Schmidt
modes for j = s and i corresponding to the signal and idler
fields, respectively. As the two fields have been assumed to
be nearly degenerate in frequency and identically polarized,
the situation is nearly symmetric under an exchange of the
signal and idler fields, and therefore, the Schmidt modes u;, for
both the fields can be regarded to be identical. In the low-gain

regime, the modes are populated by one photon each, whereas
in the high-gain regime, the same modes can be populated
by higher but equal numbers of photons. Both the Schmidt
spectrum {A;} and the Schmidt modes {u; } depend on the gain
of the process. In terms of the above definitions, the first-order
spatial correlation function GV(q,, ¢.) of the signal field can
be shown to take the form [33,34]

oo
GV, q) =) heur(g,) ui(g)), )
k=0

which is formally equivalent to the reduced density matrix
of the signal field obtained by performing a partial trace
of the global bipartite pure state over the idler modes. The
above equation expresses the coherent mode decomposition
of the signal field. Thus, the Schmidt modes and the Schmidt
spectrum of the entangled signal-idler state from Eq. (1) can
be directly obtained as the eigenmodes and eigenvalues of
the coherent mode decomposition Eq. (2) of the signal field,
respectively. This connection between the Schmidt decompo-
sition of the global bipartite pure state and the coherent mode
decomposition of the individual fields has been extensively
used in previous studies for characterizing the entanglement
of bipartite pure states [26,27,35-37].

The theoretical form of the first-order spatial correlation
function of the signal field produced from high-gain SPDC is
given by [31]

GV g,.q,) = kc;c/ / dp (|V,(p)|?) e~ ]
sZWsz
sinh I'(Ak,, p)L ][ sinh T'(AK’,, p)L
[ T(Ak;, p) M T(AK, p) }
> ei(Ak;—Ak;)L/Z, (3)

where kg, is the longitudinal wave-vector component, p is the
transverse position vector at the crystal plane, V,(p) is the
pump transverse amplitude profile, L is the crystal length, Ak,
is the longitudinal wave-vector mismatch Ak, evaluated under
the condition ¢, + g; = 0 as discussed in Ref. [31], and C;
is an overall constant. The quantity I'(Ak., p) takes the form
(31]

C AN
F(A/Ez,ms[ 3|vp<p>|2—( )} . @

ksz kiz 2

where k;, is the longitudinal wave-vector component ;. of the
idler field evaluated under the condition g, + ¢; = 0, and C,
is a scaling factor. Thus, using Egs. (3) and (4), it is possible
to compute GV(q,, ¢’) for a pump field with any arbitrary
strength and spatial profile.

We now note that, in general, the function GV (q,, ¢.)
needs to be evaluated for all pairs of transverse wave vec-
tors ¢, and ¢, with each evaluation involving an integration
over the spatial position vector p, which is a cumbersome
procedure. Furthermore, the subsequent diagonalization of
GV (q;, ¢') to yield the Schmidt spectrum and Schmidt modes
can also be highly computationally intensive [32]. However,
let us consider the special case of a rotationally symmetric
pump field, i.e, V,(p) = V,(p). If the crystal is sufficiently
thin such that the transverse walk-off is negligible, the
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FIG. 1. Numerical simulations of SPDC of a Gaussian pump
for a typical gain value in the high-gain limit of parametric
down-conversion: (a) far-field intensity profile /(g,) = GV (q,, q,),
and (b) real part of the first-order spatial correlation function
GV (G5 G-

generated field can be approximated to be quasihomogeneous
and isotropic, which leads to the condition [35]

GV g, ¢) ~ J1(q)I(q,) gV (g, — 4., Q)

where I(q,) = G"(q,, q,) is the far-field intensity as depicted
in Fig. 1(a) and gV (|q, — q.|) is the degree of spatial co-
herence. In other words, the degree of spatial coherence g(!)
depends only on the relative distance |g, — ¢/| between g, and
q., and not on either of them individually. As a result, it is
sufficient to compute G (g, q.,) as depicted in Fig. 1(b)
along just a single axis, say the x axis, to infer the statistics
of the field, which is a much simpler task than computing
the entire function G(l)(qs, q,). Furthermore, the 2D function
G (gs, ¢.,) can be readily diagonalized as

oo
GV (gsrr i) = Y 14 vilgs )V} (d), (6)
i=0
where p; are positive real coefficients and v;(g,, ) are 1D nor-
malized eigenfunctions. From rotational invariance, it follows
that the corresponding eigenvalues and eigenfunctions of the
y-axis counterpart G(l)(qsy, q;y) would be identical to those
for the x axis. The full Schmidt spectrum {A;} and the full
Schmidt modes {u;} can then be computed as

{Ae) = {mi pj}, (72)
{u(gy)} = {vi(gs) ® v(gy)}- (7b)

In other words, the Schmidt spectrum {A;} is computed
by taking the tensor product of the {u;} with itself and
then arranging the elements in nonincreasing order. Simi-
larly, the full 2D Schmidt modes can be computed by taking
a pairwise tensor product of the 1D Schmidt modes with
themselves.

For concreteness, we consider a specific case, namely, that
of type-I collinear SPDC from a Gaussian pump field. We
carry out numerical simulations for the following parameters:

Vyo(p) = gexp {—p?/wp}, (8)

Ak, = k| — 2v/1Ks]* — lg, 12, (8b)

where g is the pump amplitude and w, = 185 um is the
1/e? pump spatial beam-waist size. We assume pump wave-
length A, = 355 nm, signal wavelength A; = 700 nm, and

L =3 mm is the length of the negative uniaxial g-barium
borate (BBO) crystal. The quantities |ks| = 27wng /Ay and
lkp| =2mn,(6,)/A, are the signal and pump wave-vector
magnitudes, respectively. Here, 6, is the angle between
the extraordinarily polarized pump’s propagation direc-
tion inside the crystal and its optic axis, and 7,(0,) =

Npelpo/ \/ n2,sin® 6, + n2, cos” 6, is the effective refractive in-
dex experienced by the pump [38]. The quantities 7,.), and
ny, are the (extra)ordinary and ordinary refractive indices for
the pump and signal wavelengths, respectively. These quan-
tities can be obtained using the Sellmeier relations for BBO
[39]:

0.0184
2 2
1) =2.7405 + —————— — 0.015512, 9
() t 200179 )
2(0) = 2.3730 + _ 00128 0.004422 (9b)
n = 4. - V. 5
¢ A2 —0.0156

where n),(1) is the (extra)ordinary refractive index, and A
is the wavelength in micrometers. We substitute these rela-
tions in Eq. (3) to compute the intensity profile /(g,) and
GV (gs, ¢.,), which we depict in Figs. 1(a) and 1(b), respec-
tively. We then diagonalize G'V)(gy,, ¢..) and tensor multiply
the eigenvalues and eigenmodes to compute the full Schmidt
spectrum and 2D Schmidt modes as depicted in Fig. 2. Note
that there are double degeneracies observed in the distribution
{Ax} due to the product u; ; being the same for the two pos-
sible permutations of u; and u ;. Moreover, the corresponding
Schmidt modes v;(gs) ® vj(gsy) and v;(gs) @ vi(gsy) are
also equivalent up to a rotation of 90°. These degeneracies
and permutation equivalences originate from our assumption
of rotational invariance.

III. EXPERIMENTAL RESULTS

We now consider the task of performing the experimental
characterization of the Schmidt spectrum and Schmidt modes.
In general, an experimental measurement of G"(g,, ¢’) nec-
essarily involves the use of interferometry. However, for our
purposes, this is not essential. As the global state of the signal-
idler field is a bipartite squeezed pure state, it follows that
the individual state of the signal field obeys thermal statistics
[40]. For a thermal field, there is a simple relation between
GV (q;, ¢") and the second-order spatial correlation function
G?(q,,q.) = (I(g,)I(¢.)), where (---) denotes an ensemble
average over many realizations of the field. This relation is
known as the Siegert relation and can be written as (see
Sec. 3.7 of Ref. [40])

G?(q,.q)) = 1GV(q,, ¢)I* + TgNI(g)).  (10)

Thus, for a thermal field, the magnitude of G'V(q,,q’)
can be inferred from a characterization of G®(gq,, q’) us-
ing intensity correlation measurements. For a rotationally
symmetric source, the Fourier relationship between the near-
field and far-field correlations implies that G(q,, ¢/) can
be approximated to be real, i.e, GV (q,, ¢") ~ |GV (q;, q)|
[32,41,42]. We also verified the validity of this approximation
by numerically computing G'')(¢,, ¢%) using Eq. (3) for a
Gaussian pump field. Substituting G (q,, ¢’) = (I(g,)1(q"))
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FIG. 2. Illustration of the procedure for obtaining (a) the Schmidt spectrum, and (b)—(f) 2D Schmidt modes through a tensor product of

their 1D counterparts for the first few modes.

and 81(q,) = I(q,) — (I(q,)) into Eq. (10), it follows that

GV (q,.q.) ~ /(51(q,)81(q.)).

Thus, G(g,, ¢) can be experimentally measured by study-
ing the correlations between the signal field’s intensity
fluctuations in the far field.

In our experimental setup depicted in Fig. 3(a), a 355-nm
30-ps pulsed EKSPLA PL2231 Nd:YAG laser emits vertically
polarized pulses of light at a repetition rate of 50 Hz. These
pulses are spatially filtered to obtain the desired rotationally
symmetric Gaussian profiles. The amplitude of each pulse is
controlled using a combination of half-wave plate and polariz-
ing beam splitter. This amplitude is measured up to an overall
scaling factor using a Coherent EnergyMax USB-J-10MB-
HE energy meter. The beam-waist size w,, defined as 1/e2
width, of the Gaussian pump was measured using a Gentec
Beamage-3.0 beam profiler and was found to be w, = 185 um
at the waist plane. The pulses are incident onto a 3-mm BBO
crystal cut for generating horizontally polarized signal-idler
photons for perpendicular incidence of the pump. The residual
pump after the crystal is removed by means of two dichroic

(1)

== BD
DM IF
Spul -
[ AN L
Lens
HWP PBS BBO DM ens EMCCD
Energyp T
meter BS !
1
Trigger !
BD signal :

Pulsed Laser
355 nm, 30 ps

mirrors and dumped into beam dumps. The signal field is fil-
tered using a filter of bandwidth 10 nm centered at 700 nm and
then imaged using an Andor Ixon-897 electron-multiplying
CCD camera (EMCCD) at a resolution of 256 x 256 pixels
with individual pixel size 16 um x 16 um. The camera was
triggered using an electrical signal from the laser to ensure
that each image corresponds to exactly one pulse. As depicted
in Fig. 3(b), we acquired five sets of 1000 single-shot images
each of the signal far-field for each pump amplitude value.
Owing to our assumption of rotational invariance, we only
need to evaluate G"(gy,, ¢.,) along a single diametric x-axis
slice, but as each diametric slice is statistically identical, we
can effectively utilize slices of all possible orientations. For a
given slice, GV (g, ¢,,) can be computed as

M
1
GV (gsw, ) ~ o7 > V181 (45)81(4)
j=1

1 M
= 27 2 V(08 g), (1)
j=1

(b) Total correlations
o1

1
0
@@_).‘
j!
0

True correlations

Single-shot images 0

Accidental correlations

FIG. 3. (a) Schematic of the experimental setup. (b) Conceptual depiction of the procedure for experimentally measuring G (gyy, ¢.,)
from multiple diametric slices of multiple single-shot images of the signal field. HWP, half-wave plate; PBS, polarizing beam splitter; BBO,
B-barium borate; DM, dichroic mirror; BD, beam dump; IF, interference filter of bandwidth 10 nm centered at 700 nm; EMCCD, electron-

multiplying charge-coupled device camera.
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FIG. 4. (a) Experimental and theoretical results depicting the spatial magnitude profiles of three Schmidt modes u(q,), u;(q,), and u3(q,)
for increasing gain values. (b) Schmidt spectrum for the gain g = 1.49. (c) Variation of the total signal intensity and the Schmidt number

K =1/, A%, where Y, A, = 1, with respect to increasing gain.

where M is the number of images in the ensemble and
81i(gsx) = 1j(gsx) — (Ij(gsx)) is the intensity fluctuation of
the pixel at distance g;, from the center in the jth image
and 81y41(qs) = 811(gsy)- Note that the above Eq. (12) is
markedly distinct from Eq. (11) due to the presence of the
second term. This term quantifies the accidental correlations
that are introduced between pixels from the jth image and the
(j + 1)th image even though the two images were taken for
two different pump pulses [43,44]. Consequently, this term
is subtracted from the total correlations quantified by the
first term to equal the true correlations G'V)(gy,, ¢..) on the
left-hand side. Incidentally, this background subtraction step
also ensures that GV (g, ¢.,) tends to O when the separation
|gsx — q.,| is sufficiently large. Thereafter, GV (g, q..) is
diagonalized and the resulting eigenvalues and eigenmodes
are tensor multiplied as previously described to yield the full
Schmidt spectrum and full 2D Schmidt modes.

In Fig. 4, we present our experimental results and their
comparison with theoretical predictions for different gain val-

ues. We used the parameter C; from Eq. (3) as a fit parameter
in our simulations. In addition, the scaling factor C, from
Eq. (4) was chosen such that g < 1 and g > 1 correspond to
the low- and high-gain regimes, respectively. The condition
for collinear emission k;, = |k;| for j = p, s, and i yields
o) = 32.753° and we chose 6§, = 32.7° in our simulations.
The small offset is allowed because 6, is approximately set
by hand in experiment. In Fig. 4(a), we depict the magnitude
profiles of three Schmidt modes, uo(q,), u1(q,), and us(q,),
for three representative gain values, namely, g = 1.18, 1.56,
and 1.78. We note that the Schmidt modes expand slightly
with increasing gain. For instance, the experimentally mea-
sured full width at half maximum (FWHM) of the first mode
uo(q,) grows from 20.99 mrad at g = 1.18 to 26.63 mrad at
g = 1.78. In particular, this corresponds to a 26.87% increase
in the experimentally measured FWHM, and the theoretically
predicted FWHM shows an increase of 24.61% in the same
gain range. In Fig. 4(b), we depict the Schmidt spectrum {\}
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over 25 modes for g = 1.49, where we have normalized Ay
such that ) « M = 1. InFig. 4(c), we show the variation of the
total signal intensity and the Schmidt number K = 1/, A7,
which quantifies the effective width of the Schmidt spectrum.
The signal intensity on the left y axis grows exponentially
with pump amplitude as expected in the high-gain regime,
and the Schmidt number K on the right y axis decreases with
increasing gain, which indicates a gradual reduction in the
degree of spatial entanglement between the signal and idler
fields with increasing gain.

We find overall agreement in our results between experi-
mental measurements and theoretical prediction. In particular,
the shapes of the Schmidt modes in Fig. 4(a) show a
good match between theory and experiment. Nevertheless,
Figs. 4(b) and 4(c) reveal some disagreement between theory
and experiment. This disagreement could be due to sev-
eral reasons: (i) we assume a monochromatic signal field
at 700 nm, whereas in experiment, we use a spectral filter
centered at the same wavelength with a FWHM bandwidth
of 10 nm; (ii) we assume a monochromatic pump field with
a perfectly Gaussian profile, but in experiment the pump has
spatial aberrations and multiple frequency components; and
(iii) the finite pixel resolution of EMCCD inevitably leads
to an overestimation of the spatial correlation width due to
coarse graining, and consequently results in an underestima-
tion of the Schmidt number.

IV. SUMMARY AND OUTLOOK

In this work, we propose and demonstrate a highly efficient
method for theoretically and experimentally characterizing
the spatial Schmidt modes and the Schmidt spectrum of the
bright squeezed vacuum field produced from high-gain SPDC.
The existing method adopted in Ref. [32] is fully general
but is computationally highly cumbersome and scales poorly
with the computational input size specified by the number
of pixels N x N and the number of images M. We restrict
our attention on the specific but commonly encountered sce-
nario where the pump field is rotationally symmetric and,
consequently, the generated signal field is quasihomogeneous
and isotropic; i.e, the degree of first-order spatial coherence
is translationally and rotationally invariant. In this scenario,
we show that the associated symmetries can be used to sig-
nificantly speed up the numerical computations involved in
both the experimental and the theoretical characterization
procedures. In comparison to the method adopted in Ref. [32],
our approach already achieves a computational speedup of
over 2 orders of magnitude for the computational input size
of N ~ 256 and M ~ 5000 considered in this paper, and this
speedup is expected to be even more dramatic for larger input
sizes. As a direct consequence of this speedup, we are able
to perform the characterization efficiently and accurately for

multiple different pump amplitudes and study the behavior
of the Schmidt spectrum and Schmidt modes as a function
of increasing gain. We find that our experimentally measured
modes and spectrum are in overall agreement with their theo-
retically predicted counterparts. Our results also clearly reveal
the slight expansion of the Schmidt modes and the gradual
narrowing of the Schmidt spectrum as the gain increases.

In essence, our method sacrifices complete generality for
a significant computational speedup in specific but commonly
encountered experimental scenarios. We emphasize that our
assumption of a rotationally symmetric pump field is valid for
most commonly employed experimental conditions of SPDC,
especially in the high-gain regime because structuring high-
power pulsed pump fields is presently quite difficult due to
the relatively low damage thresholds of spatial light modula-
tors. Therefore, our method has substantial applicability and
has the potential to be the standard choice in the future for
characterizing the Schmidt modes of entangled fields. In fact,
it can even be employed for measuring the coherent modes
of classical light fields [41,45]. Nevertheless, it must also be
acknowledged that if the assumption of rotational invariance is
no longer valid, such as situations involving thick crystals with
large walk-off or rotationally asymmetric structured pump
fields, our method will not be applicable.

Our work can have important implications in the field
of quantum imaging [7]. For instance, quantum imaging
schemes such as sub-shot-noise imaging [14,17], ghost imag-
ing [15,18], and imaging with undetected photons [16,19]
face the need to improve the resolution and contrast while
also preserving any genuine quantum advantage that may be
present. Our work can be seen as a step towards meeting
this need because it provides a quantitative characterization of
the spatial correlations of bright multiphoton entangled states
from high-gain SPDC and their dependence on the amplitude
of the pump field. We hope that this work may eventually in-
form the development of novel quantum imaging schemes that
could potentially beat the best available classical counterparts.
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